Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Mark E Light,* Philip A Gale and Simon J Brooks

School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England

Correspondence e-mail: light@soton.ac.uk

Key indicators

Single-crystal synchrotron study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.053$
$w R$ factor $=0.149$
Data-to-parameter ratio $=17.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Bis(tetrabutylammonium) isophthalate 1-phenyl-3-[2,4,5-tris(3-phenylureido)phenyl]urea: a synchrotron study

The structure of $2 \mathrm{C}_{16} \mathrm{H}_{36} \mathrm{~N}^{+} \cdot \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}{ }^{2-} \cdot \mathrm{C}_{34} \mathrm{H}_{30} \mathrm{~N}_{8} \mathrm{O}_{4}$, comprises tapes of encapsulated hydrogen-bonded isophthalate anions which are arranged into parallel sheets interleaved with tetrabutylammonium layers; each of the two independent neutral molecules is disposed about a centre of inversion.

Comment

The title complex, (I) (Fig. 1), was prepared as part of an ongoing study into the carboxylate-binding properties of ureabased anion receptors (Brooks et al., 2005a,b, 2006). The receptor of the title compound, (I), exists as two independent molecules each disposed about an inversion centre. Each of these has a similar, but not identical, conformation with the four phenyl urea arms forming a cross-like arrangement. In both cases, the least-squares planes through the pendant phenyl rings of opposing arms are parallel, from symmetry, but the arms are twisted out of the plane defined by the central aromatic ring. Constructing the least-squares planes through the rings of the symmetry-related arms and calculating the angle between them, we obtain values of 59.63 (4) (molecule 1) and $49.09(4)^{\circ}$ (molecule 2); it is this difference that best describes the disparity between the two independent molecules. The geometry of the isophthalate anion is unremarkable, the least-squares plane through both carboxylate groups being tilted away from the ring by 16.6 (3) ${ }^{\circ}$.

(I)

The guest isophthalate anions link the hosts into tapes via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 2 and Table 1), each carboxylate group interacting with an adjacent receptor so that atom O5 forms three hydrogen bonds and atom O6 two; the corresponding atoms of the second independent molecule are O 7 and O 8 , respectively. This implies that the $\mathrm{N} 7-\mathrm{H}$ and $\mathrm{N} 2-\mathrm{H}$ hydrogen bonds are bifurcated. The donor-acceptor distances range from 2.7455 (16) to 3.3616 (16) \AA. Within the tapes, the two independent host molecules alternate, and these tapes interdigitate to form sheets in the (111) plane. The

Received 7 March 2006 Accepted 10 March 2006
supramolecular structure is completed by a parallel arrangement of these sheets interleaved with layers of the tetrabutylammonium counterion.

Experimental

The receptor was prepared according to a literature procedure (Mataka et al., 1993). Crystals of the tetrabutylammonium isophthalate complex were obtained by slow evaporation of a solution of the receptor in acetonitrile in the presence of excess tetrabutylammonium isophthalate.

Crystal data

$2 \mathrm{C}_{16} \mathrm{H}_{36} \mathrm{~N}^{+} \cdot \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}{ }^{-} \cdot \mathrm{C}_{34} \mathrm{H}_{30} \mathrm{~N}_{8} \mathrm{O}_{4}$
$M_{r}=1263.69$
Triclinic, $P \overline{1}$
$a=12.7319$ (3) \AA
$b=16.0019$ (4) \AA
$c=19.3005$ (5) A
$\alpha=96.512(1)^{\circ}$
$\beta=108.754$ (1) ${ }^{\circ}$
$\gamma=103.554(1)^{\circ}$
$V=3542.79(15) \AA^{3}$
$Z=2$
Data collection
Bruker SMART APEX2 CCD
diffractometer
$R_{\text {int }}=0.023$
Fine-slice ω scans
32925 measured reflections
16104 independent reflections
$D_{x}=1.185 \mathrm{Mg} \mathrm{m}^{-3}$
Synchrotron radiation
$\lambda=0.6727 \AA$
Cell parameters from 9807
reflections
$\theta=2.2-28.3^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Plate, colourless
$0.15 \times 0.10 \times 0.03 \mathrm{~mm}$

12499 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0838 P)^{2}\right. \\
& \quad+0.6824 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.00 \\
& \Delta \rho_{\max }=0.44 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.22 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.149$
$S=1.02$
16104 reflections
935 parameters
H -atom parameters constrained

Figure 1
View of the components of (I), with the atoms of the asymmetric unit labelled; non-acidic H atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level. In the left-hand neutral molecule unlabelled atoms are related to labelled atoms by $1-x,-y,-z$. In the right-hand neutral molecule unlabelled atoms are related to labelled atoms by $-x,-y, 1-z$.

Figure 2
View of the hydrogen-bonded (dashed lines) tapes interdigitated into sheets in the ($1 \overline{1} 1$) plane; non-acidic H atoms have been omitted for clarity.
structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank W. Clegg at the EPSRC single-crystal synchrotron service at Daresbury for data collection (Cernik et al., 1997).

References

Brooks, S. J., Edwards, P. R., Gale, P. A. \& Light, M. E. (2006). New J. Chem. 30, 65-70.
Brooks, S. J., Gale, P. A. \& Light, M. E. (2005a). Chem. Commun. pp. 46964698.

Brooks, S. J., Gale, P. A. \& Light, M. E. (2005b). CrystEngComm, 7, 586-591.

organic papers

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Cernik, R. J., Clegg, W., Catlow, C. R. A., Bushnell-Wye, G., Flaherty, J. V., Greaves, G. N., Hamichi, M., Burrows, I., Taylor, D. J. \& Teat, S. J. (1997). J. Synchrotron Rad. 4, 279-286.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Mataka, S., Irie, T., Ikezaki, Y. \& Tashiro, M. (1993). Chem. Ber. 126, 18191822.

Sheldrick, G. M. (1997). SHELXS97 and SHELX97. University of Göttingen, Germany.
Watkin, D. M., Pearce, L. \& Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

